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Nonlinear water waves generated by 
an accelerated circular cylinder 

By H. J. HAUSSLING AND R. M. COLEMAN 
David W. Taylor Naval Ship Research and Development Center, 

Bethesda, Maryland 20084 

(Received 24 July 1978 and in revised form 31 October 1978) 

Numerical solutions for the irrotational flow of an incompressible fluid about a cir- 
cular cylinder accelerated from rest below a free surface are presented. The usual 
restriction to linearized free-surface boundary conditions has been avoided. The 
transient period from the start to a local steady state or to the development of a very 
steep wave slope is investigated in terms of free-surface profiles and body-surface 
pressure distributions. Linear and nonlinear results are used to illustrate the transition 
from deep submergence when nonlinear effects are small to shallow submergence 
when linearized analysis is inaccurate. 

1. Introduction 
The time-dependent irrotational flow of an incompressible fluid past a circular 

cylinder accelerated from rest below a free surface has been analysed by numerical 
methods. A paper presented a t  the Second International Conference on Numerical 
Ship Hydrodynamics (Haussling & Coleman 1977) described the procedure used and 
presented some initial results. The work reported in that paper revealed two basic 
results. ( 1 )  When the method was applied to the linearized equations the computed 
flow evolved toward a steady state which showed excellent agreement with linearized 
steady-state results obtained by other methods. (2) When the method was applied to 
the nonlinear problem for shallow submergence the flow evolved until a very steep 
wave slope developed downstream from the cylinder. The nonlinear development 
could not be pursued beyond this point because of limitations in the mathematical 
model. Thus no nonlinear steady state was achieved. 

In more recent work nonlinear steady-state solutions have been found. For inter- 
mediate submergence the flow evolves toward a steady state which differs from the 
linearized steady state. Even for shallow submergence a nonlinear steady state is 
achieved through the application of a free-surface pressure distribution to prevent 
(or simulate) wave breaking. The present paper uses these new results to give a 
picture of the effect of the depth of submergence on both the linear and nonlinear 
flows. For deep submergence nonlinear effects are of limited significance; and for 
shallow submergence linearized analysis is inaccurate. 

Various investigators have previously considered the problem of determining the 
flow about, and the pressure distribution on, a submerged body in motion relative to 
a fluid having a free surface. The situation in which the body is a circular cylinder has 
frequently been considered as a test problem for different methods because it retains 
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FIGURE 1. Circular cylinder at submergence depth F, moving through water of depth d. 

the free-surface features while eliminating the difficulties of treating a more compli- 
cated body shape. Havelock (1936) obtained a steady-state analytic solution for a 
circular cylinder translating horizontally a t  constant speed below a free surface. 
Giesing & Smith (1967) solved the same problem by a numerical solution of an integral 
equation obtained through the use of a Green’s function. More recently the finite- 
element method has been successfully tested on this problem (Bai 1975; Mei & Chen 
1976; Zarda & Marcus 1977). 

In  all of this previous work the free-surface boundary conditions were linearized. 
In the present study this restriction has been dropped. Because it is not known in 
advance whether a particular nonlinear problem will have a steady-state solution, the 
unsteady problem has been considered. 

2. The flow problem 
The flow development due to the acceleration from rest of a circular cylinder of 

infinite span in an incompressible fluid bounded above by a free surface and below 
by a rigid wall is considered. The fluid is initially a t  rest and has uniform depth d a8 
defined in figure 1. The depth of submergence (the distance from the undisturbed free 
surface to the centre of the cylinder) is h and the horizontal speed of the cylinder is u. 
An (2, y) co-ordinate system moves with the body and has its origin located at the 
level of the undisturbed free surface. It is assumed that the flow is irrotational and 
that the fluid is incompressible and lacks surface tension. It is also assumed that the 
surface elevation can be described at any time t by specifying y as a single-valued 
function of x: y = Y(x, t ) .  This assumption is not valid if the waves approach breaking 
conditions. In  such a case a more sophisticated formulation would be necessary. 

The dimensionless form of the initiallboundary-value problem in the moving 
reference frame for the free-surface elevation Y and potential 9 for the velocity 
relative to a frame a t  rest is 

$xx+q&yy = 0 -a < x < 00, -a  < y  < Y ;  (1) 

yt = (u(t)-q5.JYx+& at y = Y ;  (2) 
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fit = u(t)$,- Y / F r z - ~ ( @ + q 5 ~ )  at y = Y ;  (3) 

0 at y =  - d ,  

- u? - A at the body surface; (4) 

& = O  at x =  200; (5) 

$ = O ,  Y = O  a t  t = 0 .  (6) 

The subscripts x ,  y and t denote differentiation. The characteristic length and 
velocity scales in the dimensionless quantities are D, the diameter of the cylinder, 
and U ,  its final speed. The Froude number is F r  = U/(gD)) ,  where g is the gravita- 
tional acceleration. The unit normal vector to a boundary is A, and I is a unit vector 
in the x direction. The pressure at the free surface is denoted by ps. 

The dynamic pressure p on the body surface can be computed from the Bernoulli 
equation 

(7) 

The resistance and lift coefficients are 

(8 )  

P = - 54 + U$r - *(@ + 

R = resistance/pD U2 = - Jpii  .?as 

and L = lift/pDU2 = Jpfi . jds, (9) 

where 1 is a unit vector in the y direction, and where the integrations are over the 
body surface. 

In all cases the cylinder accelerates uniformly from rest to its final speed during one 
unit of dimensionless time. That is 

0 t B 0 ,  

u =  t O < t < l ,  ll 1 < t .  I 
In all cases but one the pressure at the free surface is specified to be zero (p ,  = 0). 
In the one exceptional case the effect of a locally non-zero surface pressure on the 
developing flow is investigated. 

3. Method of solution 
This section presents an outline of the numerical method used to solve the initial/ 

boundary-value flow problem. Details can be found in the previous paper by the 
authors (Haussling & Coleman 1977). 

To simplify the numerical solution of the problem, the time-dependent physical 
region in (2, y )  space (figure l ) ,  cut off suitably far upstream and downstream, is 
transformed to a time-independent computational region in (c, 9) space which, as 
shown in figure 2, is composed solely of rectangles. The cylinder is mapped onto the 
slit LE, the free-surface onto AB, the bottom of the water onto I H ,  the upstream 
boundary onto AN and J I ,  and the downstream boundary onto BC and GH. The 
boundaries JKLMN and CDEFG represent cuts within the fluid. 

The desired transformation represented by 

(11) 
F L H  92 26 
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FIGURE 3. The computational co-ordinate system in physical space at t = 0. 

is computed using methods employed by Thames et al. (1977) to generate similar 
mappings. The transformations are required to be solutions of Poisson equations 

L+ g/l/ = P(t.9 7, t )  (12) 

and 715 + 7vv  = Q ( t . 7  7, $1, (13) 

subject to appropriate boundary conditions. The source functions P and Q are specified 
such that the resulting (<,7) co-ordinate system is suitable for the numerical 
calculations. 

For computational purposes, the generating system (12) and (13) and the flow 
problem (1)-(6) are transformed to the ( 5 , ~ )  space. Thus the flow problem is solved 
using a time-dependent (<,y) co-ordinate system which a t  t = 0, when the water is 
undisturbed, appears as in figure 3. The co-ordinate system is cylindrical near the 
body but also conforms to whatever region is occupied by the water. 

Both the transformation and flow problems are solved numerically. The domain of 
integration in the (<, 7) plane is replaced by a uniform network of grid points (figure 2). 
The differential equations are replaced by difference equations involving the values 
of the dependent variables a t  these grid points. The finite difference versions of the 
transformed potential equation and transformation generation equations are solved 
using successive over-relaxation. 

Euler's modified method of time differencing is used to replace the transformed 
versions of the free-surface boundary conditions (2) and (3) with a suitable implicit 
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Cylinder Water Free-surface 
submergence h depth d boundary conditions 

1 *o 2.5 Linearized and nonlinear 
2.0 4.0 Nonlinear 
1.5 3.0 Linearized and nonlinear 
1.25 2.15 Nonlinear 

TABLE 1. The various cmes considered. In all cases Pr = 0.566. Each case is referred t o  by its 
depth of submergence h. 

marching scheme. The marching equations along with the potential and transforma- 
tion generation equations are solved in a combined iterative procedure. 

A numerical filtering scheme was introduced to eliminate the instability which is 
usually present in such marching methods for nonlinear water wave problems. Filtering 
techniques were discussed by Shapiro (1975) and used successfully by Longuet- 
Higgins & Cokelet (1976) to eliminate such a numerical instability encountered in 
the calculation of the development of breaking waves. 

I n  all cases considered the upstream and downstream computational boundaries 
were located a distance of about 11 diameters from the body. Grid systems were 
used with about 3000 points having configurations near the body similar to  that 
shown in figure 3. Storage occupied about 60000 words on a CDC 6400 computer. 
With a time step of 0.03 about 90 min of CDC 6400 CPU time was needed to cal- 
culate the flow development for a non-linear case to almost steady state in the neigh- 
bourhood of the cylinder. 

4. Results 
The cases considered are listed in table 1 in the order in which they will be discussed. 

4.1. h = 1.0 

The linearized version of the problem was considered first to test the numerical 
method on a case for which there was a pre-existing steady-state solution for com- 
parison. The nonlinear terms were omitted from the free-surface boundary conditions 
and those conditions were applied a t  the level of the undisturbed free surface. The 
results, which were presented in Haussling & Coleman (1977), showed that the un- 
steady numerical solution approached asymptotically the steady-state results of 
Giesing & Smith (1967) for both the forces on the cylinder and the free-surface ele- 
vation. I n  the steady-state solution the free surface was essentially tangent to the 
body surface, a configuration indicating that the linear solution was far from reality. 

I n  considering this submergence, h = 1.0, with the exact boundary conditions, the 
solution could be pursued for only a short time, until about t = 0.8 by which point a 
very large velocity gradient had developed above the cylinder. The inability to 
continue the solution beyond this time indicates a deficiency in either the mathematical 
or numerical model in such a highly nonlinear case. 

26-2 
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-2.0 - 1.0 0 I .o 2.0 3.0 4.0 5.0 
.1( 

FIGURE 4. Nonlinear free-surface evolution compared with the linear steady-state solution: 
h = 2, d = 4. -0-, unsteady; __ , steady state. (a) t = 3.0. ( b )  t = 4.5. (c )  t = 6.0. (d )  
t = 7.5. (e) t = 9.0. 

4.2. h = 2.0 

I n  figure 4 the development of the free-surface elevation is compared with the linear 
steady-state solution obtained using the NASTRAN finite-element programme 
according to the technique of Zarda & Marcus (1977) .  The initial flow development 
is quite linear. However, the surface elevation approaches a steady state which is 
somewhat different from the linear result. At t = 9, when the flow is a t  almost steady 
state near the body, the linear and non-linear surface elevations, which are shown in 
detail in figure 5 ,  deviate significantly downstream from x = 0. The nonlinear elevation 
continues to drop with increasing x to about x = 0.5 and then rises abruptly to a high 
peak near x = 1-8. The maximum slope on the upstream face of the wave is 

d Y / d x  2: 0.38. 

This compares with the largest non-breaking wave slope d Y / d x  2: 0 4 7  found in 
experiments by Salvesen & von Kerczek (see the discussion of Haussling & Coleman, 
1977) .  This difference between the linear and nonlinear results occurs in spite of the 
facts that  the linear wave slopes are quite sinall and that the reduction of the gap 
between the water surface and the cylinder is less than 10 yo of the undist,urbed gap. 

I n  figures 6 and 7 are plotted the various terms in the free-surface boundary con- 
ditions. Figure 6 shows that the nonlinear terms in the dynamic free-surface boundary 
condition, while smaller in absolute value than the linear terms, are by no means 
negligible. As one approaches the waves from upstream, substantial values of 4: are 
first encountered between x = - 0.5 and x = 0. Between x = 0.5 and 1.0 @ becomes 
significant. Although the nonlinear term q5xYx in the kinematic free-surface condition 
is also significant (figure 7) ,  the rapid rise in the surface downstream from the body is 
not associated directly with this term but rather with large values of #v in this region. 
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FIQURE 5. Detail from figure 4 showing the nonlinear free surface at t = 9 and the 
linear steady-state profile. -e, nonlinear; -, linear. 

0.4 

0.2 

0 

-0.2 

-0.4 

FIGURE 6. The terms in the dynamic free-surface boundary condition (3) plotted w. z 
at t = 9.6 for h = 2 and d = 4. -B-, -+-, 4q5:; -+, Y/FrsX.  -A-, 

Although the linear and nonlinear surface elevations are significantly different, 
there is quite good agreement between the corresponding body pressure distributions 
as shown in figure 8. The nonlinear pressure at t = 9.6 is somewhat greater in absolute 
value than the linear pressure, particularly on the upper surface. This small difference 
is due to the application of the nonlinear boundary conditions at the actual free- 
surface location which is closer to the body than it is in the undisturbed position. 
The water passes through this reduced gap with higher speed than it would need to 
pass through the undisturbed gap. 
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FIGURE 8. The dynamic pressure on the body surface at t = 9.6 compared with the linear 

steady-state pressure: h = 2, d = 4. -O-% nonlinear; -, linear. 
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X 
FIGURE 9. Linear and nonlinear free-surface evolution for h = 1-5 and d = 3. - , linear; 

-*, nonlinear. (a) t = 1.5. ( b )  t = 3.0. (c)  t = 4.5. (d) t = 8.0. 

4.3. h = 1.5 

The free-surface evolutions for the linear and nonlinear problems are compared in 
figure 9. In  the early development, when wave slopes are small, the two cases are 
essentially identical. At later times there are substantial differences. The nonlinear 
development is similkr to that for h = 2.0 to t = 4.5, except that for h = 1.5 the surface 
displacements and slopes are considerably greater. By t = 6.0 a very steep slope 
d Y / d x  2: 3.5 has developed at  about x = 1.5. The wave appears to be well on its way 
to breaking conditions. Unfortunately, the calculations cannot be carried out beyond 
this time because of the limitations of the mathematical/numerical model. The 
assumption of a single-valued free surface means that accuracy deteriorates as the 
surface slope increases. In  fact, the calculations break down shortly after t = 6.0. 
The deterioration of the solution is already visible a t  t = 6.0 in the form of free-surface 
oscillations in the trough between x = 1 and 1.5. With an improved surface represen- 
tation, the calculations might be continued somewhat farther into the breaking 
process, as was done by Longuet-Higgins & Cokelet (1976). 

The overall flow development is shown by the streamlines in figure 10. When the 
surface is steady, the streamlines are parallel to it. In  figure 10(d )  the streamlines 
interesecting the surface indicate that the surface is changing rapidly. 

The use of a surface pressure distribution to inhibit the development of such a 
breaking wave was investigated. The pressure was assigned the form 

This pressure is thus automatically applied whenever the surface slope exceeds unity. 
Because the pressure is proportional to $,, the velocity normal to the free surface 
(positive away from the water), it  always performs negative work on.the fluid and 
therefore removes energy from the flow. Such a pressure distribution can be viewed 
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FIQURE 10. Streamlines for h = 1-5 and d = 3. (a) t = 3.0. (a) t = 4.8. (c) t = 5.4. (d) t = 6.0. 

as a crude parameterization of the breaking process which also serves to remove 
energy from the basic flow and reduce wave heights. 

The free-surface evolution with the surface pressure acting is presented in figure 11. 
The surface profile has achieved an almost steady state near the body by t = 7.5. 
The trough at about x = 1 is shifted considerably downstream from its position in 
the linear solution. Just downstream from the trough the surface rises abruptly to 
a high wave crest. The maximum surface slope a t  t = 7.5 isd Y/dx  2: 1.5. The boundary- 
fitted co-ordinate system a t  t = 7-5 is shown in figure 12. A detailed comparison of 
the surface profile with the pressure applied and the profile with no surface pressure 
is presented in figure 13. At t = 4.8 the maximum slope has just exceeded unity, the 
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0 

-0.5 

FIGURE 1 1. Nonlinear free-surface evolution with the surface pressure distribution applied 
compared with the linear development: h = 1.5, d = 3. ~ , linear; -*, nonlinear. 
(a) t = 1.5. (a) t = 3.0. (c) t = 4.5. ( d )  t = 6.0. (e) t = 7.5. 

FIGURE 12. The computational co-ordinate system corresponding to figure 11 (e). 

applied pressure is quite small, and the two profiles agree quite closely. By t = 5.4, 
more pressure is applied and the profiles begin to deviate more. The comparison at  
t = 6.0 is made a t  the last time a t  which the results without the surface pressure are 
available. The approach to steady state beyond t = 6.0 consists mainly of a gradual 
upstream movement of the wave with a corresponding upstream shift of the applied 
surface pressure. 

A comparison of the pressure on the cylinder at t = 6.0 with and without the free- 
surface pressure is made in figure 14. At least at  this time the body surface pressure 
is essentially independent of the treatment of the free surface on the face of the 
developing wave. The computed pressure on the body at  t = 7.5 with the free-surface 
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x 
FIGURE 13. The wave development with and without the surface pressure. The lengths of the 
arrows indicate the strength of the applied pressure. -.-, with pressure; - , without 
pressure. (a )  t = 4.8. ( b )  t = 5.4. (c )  t = 6.0. ( d )  t = 6.6. 

pressure applied is compared with the steady-state linear body pressure in figure 16. 
The pressure is significantly lower in the nonlinear case on both the lower and upper 
surfaces. The nonlinear effects yield a larger pressure difference between the upper 
and lower surfaces and hence a larger lift. The lift coefficients for the nonlinear and 
linear cases corresponding to the pressure distributions of figure 15 are L = 0.07 and 
0.047, respectively. The pressure minimum on the upper surface is shifted downstream 
by the nonlinear effects, reflecting the fact that the narrowest part of the gap between 
the cylinder and the surface is somewhat downstream from the centre of the body. 
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FIGURE 
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This downstream shift of the pressure minimum leads to an increase in resistance from 
R =I 0.009 for the linear case to R = 0.1 for the nonlinear case. 

4.4. h = 1-25 
The free-surface time development was presented in Haussling & Coleman (1977). 
The evolution was much the same as for h = 1.5, except that a steep wave slope 
developed much more rapidly in this case. At t = 4.8 the maximum slope was 

d Y / d x  2: 3.3 

and the solution could not be continued furt,her in time. The position and height of 
the developing wave at  t = 4.8 were about the same as for h = 1.5 a t  t = 6.0. 

5. Summary 
The results discussed in the previous section illustrate the t'ransition from deep 

submergence when nonlinear free-surface effects are negligible to shallow submer- 
gence when linearized analysis is inaccurate. For submergence depth h = 2.0 the 
nonlinear terms are already significant. They lead to a steady-state free-surface 
elevation having a much higher peak just downstream from the cylinder than is 
found in the linearized case. For h = 1.5 a very steep wave slope develops by t = 6.0. 
The computations cannot be continued to steady state unless a pressure is applied 
to the surface to prevent (or simulate) wave breaking. For h = 1.25 such a steep 
wave slope appears, and the computations must, be terminated even earlier a t  t = 4.8. 
For h = 1.0 large velocity gradients develop quite early in the calculations and the 
solution is halted at  t = 0.8. Water flows at high speed through the narrow gap between 
the cylinder and the free surface at  shallow submergence depths. This leads to a low 
pressure on the upper downstream quadrant of the cylinder and hence higher lift 
and drag than predicted by the linearized analysis. 
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